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3. Mechanical and structural behavior 

Work relative to viscoelastic solids [74N4], composite solids [74M3, 76B4], and materials 
undergoing phase transformation [77D6] has been reviewed in the references indicated, which we 
believe represent the current state of work in these fields. Past work on shock compaction of 
porous solids is the subject of current reviews [71 HI, 74M3], but attention must also be called 
to certain fundamentally new work on this subject [78N3, 79NI]' 

3.1. Elastic solids 

The continuum theory of deformation of elastic solids is old and well developed [65TI, 74TI]. 
In its linear version it is widely applied, but routine application of the nonlinear theory is of much 
more recent origin. Most of this application has been to the behavior of highly deformable materials 
such as rubber or to the explanation of subtle effects observed by precise ultrasonic measurements 
at small strain. Shock-compression experiments present an intermediate case in that materials such 
as vitreous silica and crystalline quartz or sapphire remain elastic to compressive strains as large 
as 5 to 10 per cent, exhibiting distinctly nonlinear responses over this range. In fact, nonlinear 
elastic effects are readily apparent in the response of a wide variety of materials to shock com
pression. 

The stress relation obtained from an expansion of the internal energy function to fourth order 
in the finite strain" takes the form 

(3.1) 

The coefficients in this equation are functions of entropy, and are subject to a variety of thermo
dynamic constraints and to conditions imposed by the point symmetry of materials of interest. 
Various means, mostly involving very precise ultrasonic measurements at small strain, have been 
developed for measuring the coefficients of this equation. Some of these coefficients have b~en 
measured in shock-compression experiments and it is to this work that we now direct our attention. 
Relative to the ultrasonic work, shock experiments usually involve a less precise measurement at 
a much larger strain. Since the strains encountered in shock-compression experiments cover the 
entire range of elastic response, no extrapolation is involved in applications and the elastic range 
itself is determined. 

Uniaxial strain. Plane waves of uniaxial strain can propagate in any direction into an undeformed 
isotropic body and in certain specific directions in anisotropic bodies [65B4]. If the I-axes are 
chosen to lie in one of these allowable directions, the associated longitudinal stress is obtained 
from eq. (3.1) in the form 

(3.2) 

where we have adopted the Voigt condensation of subscripts for symmetric tensors: 11 -+ 1, 
22 -+ 2, 33 -+ 3, 23 and 32 -+ 4, 31 and 13 -+ 5, and 12 and 21 -+ 6. In dealing with the stress 
components and coefficients, one simply replaces the subscripts in adjacent pairs according to the 
above prescription, but the strains are treated according to the prescription '11 = '111 ' '12 = '122 ' 
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113 = 1133,114 = 21123,115 = 21113' 116 = 21112 (similar relations hold for the linearized strain tensor 
S;j). If, as we assume here, the material is unstressed in the reference state, the coefficient C1 vanishes 
at the reference entropy. The change in entropy occasioned by passage of a shock is of the order 11~ 
(see eq. (2.l9)~ which means that the entropy dependence of the coefficients is negligible to the 
order of the expansion given except that the coefficient C1 contributes to the highest-order term. 
This contribution is presumed to be small relative to errors in the determination of this coefficient 
in all work to date and is neglected in subsequent discussion. Using eq. (2.4)1' the longitudinal 
stress component t1 can be expressed in the form 

t1 = CllS1 + !(Cll1 + 3Cll)Si + -MCllll + 6C1ll + 3Cll)S~ + ... . (3.3) 

It is noteworthy that, as pointed out by Thurston [69Tl], the nonlinear material responds to finite 
uniaxial strain (to fourth order) as though it were linear if Cll1 = -3Cll and Cllll = 15Cll . 

As discussed in section 2.2, a compression wave will propagate as a shock only if C111 + 3C11 ~ 0 
(assuming the fourth-order term is negligible). This is the case with most materials and, when it 
prevails, the elastic coefficients can be obtained by fitting eq. (3.3) to stress-strain states obtained 
from shock-compression experiments conducted over the range of elastic response or from a 
single experiment in which the continuum of states realized in a centered decompression waveform 
is recorded Graham [72G2], using data obtained by Barker and Hollenbach [70B2], has charac
terized Z-cut sapphire to fourth order by this method. 

If Cll1 + 3Cll > 0, a centered simple wave will be produced by impact loading, and a record 
of this waveform suffices to determine the entire uniaxial stress-strain relation over the range of 
strains encountered. Vitreous silica is a material responding in this manner and its coefficients 
have been determined by Barker and Hollenbach [70B2] (see also [72G2]) on the basis of a simple 
wave analysis. 

The simple wave produced by impacting vitreous silica has approximately the form of a linear 
ramp of velocity. When this ramp wave is used to load another elastic solid placed in contact with 
the vitreous silica, a measurement of the resulting smooth waveform introduced into the second 
material can be interpreted to yield its stress-strain response [79G2]. Because of the peculiar high
pressure properties of vitreous silica, it is capable of producing its characteristic low-pressure 
ramp wave even when loaded by contact with detonating high explosive (see Wackerle [62WI]). 
This fortuitous circumstance makes certain low-pressure measurements possible in laboratories 
otherwise equipped only for conducting the high-pressure hydrodynamic investigations discussed 
in the next section. 

Shock-compression experiments carried out at stresses beyond the elastic range frequently 
produce a single stress-strain datum at the limit of this range (called the Hugoniot elastic limit). 
Knowledge of this limiting point is insufficient to fully determine the higher-order elastic properties 
of the material, and the measured value cannot be certifIed to be devoid of effects of a small amount 
of inelastic flow. Nevertheless, it is of interest to examine such data for evidence of contributions 
due to fourth-order elastic effects in cases where the third-order constants have been determined 
ultrasonically. To do this, we evaluate Cll1 from eq. (3.3). Neglecting the highest-order term, we 
fInd that Cll 1 = 2[(t1 - CllS1)/SiJ - JCll . Substituting tabulated values of Cll and the 
measured stress and strain at the Hugoniot elastic limit into this equation, we arrive at a result 
which we call C~n. A comparison of this result to other available data is shown in table 3.1. It is 
notable that in almost every case the absolute value of the third-order constant inferred from the 
Hugoniot elastic limit measurement is greater than the absolute value of the corresponding 


